

Main Product Characteristics

V _{(BR)DSS}	800V		
R _{DS(ON)}	1.56Ω		
I _D	8A		

TO-220F

Features and Benefits

- Advanced MOSFET process technology
- Ideal for high efficiency switched mode power supplies
- Low on-resistance with low gate charge
- Fast switching and reverse body recovery

Description

The GSFU8008 utilizes the latest techniques to achieve high cell density and low on-resistance. These features make this device extremely efficient and reliable for use in high efficiency switch mode power supply and a wide variety of other applications.

Absolute Maximum Ratings (T_C=25°C unless otherwise specified)

Parameter	Symbol	Max.	Unit
Drain-Source Voltage	V _{DS}	800	V
Gate-to-Source Voltage	V _{GS}	± 30	V
Continuous Drain Current, V _{GS} @ 10V ¹	I _D @ T _C = 25°C	8	А
Continuous Drain Current, V _{GS} @ 10V ¹	I _D @ T _C = 100°C	5.1	А
Pulsed Drain Current ²	I _{DM}	32	А
Single Pulse Avalanche Energy @ L=25mH	E _{AS}	760	mJ
Avalanche Current@ L=25mH	I _{AS}	7.8	А
Power Dissipation ³	P _D @T _C = 25°C	59	w
Linear Derating Factor	_	0.48	W/°C
Junction-to-Case ³	R _{ejc}	2.1	°C/W
Junction-to-Ambient (t ≤ 10s) ⁴	_	62.5	°C/W
Junction-to-Ambient (PCB Mounted, Steady-State) ⁴	$R_{ heta JA}$	40	°C/W
Operating Junction and Storage Temperature Range	T _J T _{STG}	-55 to + 150	°C

Electrical Characteristics (T_C=25°C unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Drain-to-Source Breakdown Voltage	$V_{(BR)DSS}$	V _{GS} = 0V, I _D = 250μA	800	-	_	V	
Drain-to-Source Leakage Current	I _{DSS}	V _{DS} = 800V, V _{GS} = 0V	-	-	1	μА	
		T _J = 125°C	=	-	50		
Cata ta Cauraa Farruardi aalaara		V _{GS} =30V	-	-	100	nA	
Gate-to-Source Forward Leakage	I _{GSS}	V _{GS} = -30V	-	-	-100		
Static Drain-to-Source On-	R _{DS (on)}	V _{GS} =10V, I _D = 3.5A	-	1.32	1.56	Ω	
Resistance		T _J = 125°C	=	2.38	-		
Gate Threshold Voltage	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2	3	4	1 .,	
	$V_{GS\ (th)}$	T _J = 125°C	=	1.93	-		
Input Capacitance	C _{iss}		-	1106	-	pF	
Output Capacitance	C_{oss}	$V_{GS} = 0V V_{DS} = 25V f$ = 1MHz	-	121	-		
Reverse transfer capacitance	C_{rss}		-	5.2	-		
Total Gate Charge	Q_g		-	24	-	nC	
Gate-to-Source Charge	Q_{gs}	$I_D = 8A, V_{DS} = 400V,$ $V_{GS} = 10V$	-	7.2	-		
Gate-to-Drain("Miller") Charge	Q_{gd}		-	9.7	-		
Turn-on Delay Time	$t_{d(on)}$		-	20	-	nS	
Rise Time	t _r	V_{GS} =10V, V_{DS} =400V, R_L =50 Ω ,	=	37	-		
Turn-Off Delay Time	$t_{d(off)}$	R_{GEN} =25 Ω I_{D} =8 Λ	=	59	-		
Fall Time	t_f		-	36	-		
Source-Drain Ratings and Charac	cteristics			1		•	
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Continuous Source Current (Body Diode)	Is	MOSFET symbol showing the integral reverse	-	-	8	А	
Pulsed Source Current (Body Diode)	I _{SM}	p-n junction diode.	-	-	32	Α	
Diode Forward Voltage	V_{SD}	I _S =8A, V _{GS} =0V	-	0.74	1.4	V	
Reverse Recovery Time	t _{rr}	T _{J=} 25°C, I _F =8A	-	968	-	ns	
Reverse Recovery Charge	Q_{rr}	d _i /d _t =100A/µs	-	5456	-	nC	

Notes

- 1. Calculated continuous current based on maximum allowable junction temperature.
- 2. Repetitive rating; pulse width limited by max. junction temperature.
- 3. The power dissipation P_D is based on max. junction temperature, using junction-to-case thermal resistance.
- 4. The value of R_{BJA} is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_{A} =25°C

Typical Electrical and Thermal Characteristic Curves

Figure 1. Typical Output Characteristics

Figure 2. Gate to Source Cut-off Voltage

Figure 3. Drain-to-Source Breakdown Voltage Vs. Junction Temperature.

Figure 4. Normalized On-Resistance Vs. Junction Temperature

Typical Electrical and Thermal Characteristic Curves

Figure 5. Maximum Drain Current Vs. Case Temperature

Figure 6. Typical Capacitance Vs. Drain-to- Source Voltage

Figure 7. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Test Circuit & Waveform

Figure 8. Unclamped Inductive Switching Test Circuit & Waveforms

Figure 9. Resistive Switching Test Circuit & Waveforms

Figure 10. Gate Charge Test Circuit & Waveform

Package Outline Dimensions

TO-220F

Ref.	Dimensions						
	Millimeters			Inches			
	Min.	Typ.	Max.	Min.	Тур.	Max.	
Α	4.50		4.90	0.177		0.193	
В	0.74	0.80	0.83	0.029	0.031	0.033	
С	0.47		0.65	0.019		0.026	
C2	2.45		2.75	0.096	300	0.108	
C3	2.60		3.00	0.102		0.118	
D	8.80		9.30	0.346		0.366	
Е	9.80		10.4	0.386		0.410	
F	6.40		6.80	0.252		0.268	
G		2.54		0	0.1	8	
Н	28.0		29.8	1.102		1.173	
L1		3.63			0.143		
L2	1.14		1.70	0.045		0.067	
L3		3.30			0.130		
V1	8	45°	á	8	45°		